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The Theory of Hadronic Collisions
● Hadron Classification leads to development of 

The Quark Model.
● The study of Hadron Structure leads to    

The Parton Model.
● Understanding how to use Non-Abelian Gauge 

Theory, combined with the insights of the 
Quark and Parton Models leads to the 
development of « QCD » the fundamental 
theory of the strong interactions.



  

Hadron Classification:The Hadron 
Zoo

Starting in the mid-1940's, many hadronic 
states, both mesons and baryons, were 
discovered.  Many were long-lived, decaying 
through the weak interaction, implying that they 
were not mere excitations of known particles.
Some could be grouped into isospin multiplets 
but the “strange” particles (K,,) did not fit in 
as expected.



  

Hadron Classification
          Progress in classifying the hadrons            
          came with Gell-Mann's introduction of       
          Strangeness (S) as an additive quantum 
number.  This explained some puzzles about the 
strange mesons and baryons (now known as K's 
and 's) and allowed them to be grouped into 
Isospin multiplets (K+,K0), (K0,K-), (-,0,+).  It 
also led to the Gell-Mann – Nishijima Relation

which connects isospin and strangeness violation 
with charge conservation.
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SU(3) and the Eightfold Way
          More mesons and baryons were discovered  
          and were fit into a bewildering array of       
          isospin multiplets.  Gell-Mann and Ne'eman 
(independently) combined SU(2) isospin with 
strangeness to form an SU(3) symmetry.
The pseudoscalar and vector mesons as well as 
the spin ½ baryons fit into octet representations 
of SU(3) which contains an isotriplet, a singlet  
and two isodoublets.  The idea that the octet of 
SU(3) was the basic unit of organization was 
called the Eightfold Way.

M. Gell-Mann



  

The Eightfold Way
The meson and baryon octets:

The eightfold way held that representations 
were octets or combinations of octets:          
8x8 = 1 + 8 + 8 + 10 + 10* + 27

The known spin 3/2 baryons 
were not in an octet, so 
were they in a 10 or a 27?



  

The Eightfold Way
Gell-Mann predicted that the multiplet was a 
decuplet.  The missing resonance was the S=-3 
-.  He even predicted its mass and that it 
would decay via the weak interaction.

Two years later, Samios and 
collaborators at Brookhaven 
found the - just as predicted.  
This was the great triumph of 
SU(3).



  

The Quark Model
           Gell-Mann and Zweig each introduced the 
           notion of hadron constituents lying in the 
fundamental representation of SU(3).  Zweig 
called them “Aces”, and Gell-Mann called them 
“Quarks”.  They necessarily had fractional 
charges.
Zweig called for a search to be made for the 
Aces, but Gell-Mann considered his Quarks to 
be mere book-keeping devices, with no intrinsic 
physical meaning.

M. Gell-Mann



  

The Introduction of Color
One expects the baryons to have ground state 
wave functions, which would be symmetric.  The 
Isospin assignment implied that part of the 
wave function was also symmetric.
But baryons are fermions, so where is the 
antisymmetry?  Greenberg and Han and Nambu 
each introduced a three-valued internal quantum 
number (or parastatistics) that would provide 
the needed antisymmetry.
There was still no model of dynamics and gluons 
(if mentioned) they were taken to be colorless.



  

Colored Quarks
The notion of colored quarks (or that quarks 
obey para-fermi statistics of rank three) was 
supported by the understanding of the role of 
the anomaly in 0 decay.

If the quarks are 
uncolored, the rate 
would be off by a 
factor of three.  
The color sum gets 
the right result.



  

Summary: The Quark Model

The problem of hadron classification led to the 
theories of

strangeness

SU(3) and the Eightfold Way

SU(3) and the Quark Model

Exploring the consequences of the quark model 
led to the notions of gluons and of a three-
valued quantum number which came to be called 
color.



  

The Structure of the Proton:
Elastic e-p Scattering

Elastic Scattering of an electron off of a static 
spin ½ point charge (Mott Scattering) is given by

If the static charge is replaced by a point-like 
Dirac particle of mass M, the formula is:
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The Structure of the Proton:
Elastic e-p Scattering (cont.)

The proton is not a Dirac particle, having a large 
anomalous magnetic moment p= (gp-2)/2 ⋲ 1.79.  
Accounting for this gives:

Finally, if the proton has a finite charge radius, 
the scattering my be parameterized in terms of 
Form Factors F1(Q2) and F2(Q2),
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Hofstadter and McAllister 
showed a clear deviation from 
point-like behavior.  Assuming 
the two form factors to be 
equal and that

they found
<r2>1/2 ⋲ 0.74±0.24 x 10-13cm

The Structure of the Proton:
Elastic e-p Scattering (cont.)

F Q2 =∫ d 3r r exp i r⋅Q

≈1−Q
2

6
〈 r2〉 

R. Hofstadter



  

The Structure of the Proton:
Deep Inelastic Scattering

With higher energy electrons, much of the 
scattering cross section is inelastic.  Now the 
scattering angle and the electron energy loss 
are independent variables.  The momentum 
transfer, Q2, is determined by measuring both.



  

The Structure of the Proton:
Deep Inelastic Scattering

The kinematics of DIS:

e(k) + p(p)  e(k') + X

q = k - k';  Q2 = -q2

 = (p•q)/mp = Ek – Ek'

x = Q2/(2mp); y = (p•q)/ (p•k)

W2 = mX
2 = mp

2 + Q2(1-x)/x



  

The DIS cross section may be written as a 
product of two tensors:

Symmetries restrict the structure of W:

The Structure of the Proton:
Deep Inelastic Scattering
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From studies of current algebra, Bjorken 
predicted that the structure functions would 
become scale invariant at asymptotic energies:

The observation of scale invariance in F1 and F2 
was referred to as “scaling” and x was the 
scaling variable.

The Structure of the Proton:
Deep Inelastic Scattering

lim
 ,Q2∞

F 1x ,Q
2 F 1x

lim
 ,Q2∞

F 2x ,Q
2 F 2 x , x= Q2
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In the late 1960's the linear accelerator 
at SLAC began producing ~20 GeV 
electron beams

and the SLAC-MIT experiment measured 
Deep Inelastic Scattering off of protons.

The Structure of the Proton:
Deep Inelastic Scattering

J.L. Friedman

H.W. Kendall

R.E. Taylor



  

Q2 Dependence of DIS
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The SLAC-MIT 
experiment found 
that DIS had much 
weaker Q2 
dependence than 
expected from 
elastic scattering.



  

Scaling
The experiment also observed precocious scaling 
of F2 (W2). Over the available range of Q2, no 
scaling violation was apparent.
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Explaining Scaling
Scaling could be explained by assuming that the 
electrons were really undergoing elastic 
scattering off of constituent objects in the 
proton that were approximately free particles!
This led to the development of the parton 
model.
While quarks immediately leap to mind, there 
were other candidates for the constituents.
And there was still no theory of what bound the 
partons inside of the hadron.



  

The Parton Model

The parton model assumes that the proton wave 
function is dominated by momentum components 
below some fixed kmax.  As P∞,  k3xP,  k⊥< kmax. 
Parton “states” would have a lifetime ~ xP/k⊥

2. 
An impulse Q2≫1/ would see an essentially 
free parton.  Asymptotic Freedom!

“We shall ... think of the incoming proton 
[of momentum P] as a box of partons 
sharing the momentum and practically 
free.” -- R.P. Feynman

R.P. Feynman



  

The Parton Model
The Parton Model is not the Quark Model!  It 
envisioned a rich spectrum of virtual partons  
and anti-partons, not just three quarks rattling 
around.

It even included a steeply rising spectrum of 
“wee” partons, with very small momentum 
fractions, which did not contribute to DIS, but 
could be invoked to “explain” a variety of 
observations, including hadronization the rising 
p-p cross section, etc.



  

The Parton Model
The Parton Model gave a prescription for 
computing the DIS cross section:

where f indicates the “flavor” of parton,  
represents the parton momentum fraction and  
f/p() is the density of parton f in the proton.  
Because electromagnetic corrections are small 
and there was no theory of the strong 
interaction, the electron-parton cross section 
was computed in the Born approximation.

dep p ,q
dE k ' dk '

=∑
f
∫
0

1

d 
dBorn

ef   p ,q 
dE k 'dk '

 f / p ,



  

Parton Densities
The parton densities, f/p(x) or f(x), were the 
number density of f-type partons in a proton 
with momentum fraction between x and x+dx.  
Giving the partons a quark interpretation, they 
obeyed sum rules such that

Qp = +1,  <I3> = ½, S = 0.

1 = ∫0

1
dx { 23 [u x −u x ]−1

3
[d x −d x ]−1

3
[s  x −s x ]}

1
2

=
1
2
∫0

1
dx {[u x −ux ]−[d x −d x ] }

0 = ∫0

1
dx [s x −s x ]



  

Parton Densities (cont.)
These equations have the solution:

which is exactly that expected from the 
nonrelativistic quark model.
The momentum sum rule did not work. Measuring

and assuming

implied the strange sea carried ¾ of the 
proton's momentum.  There had to be a gluon!

∫0

1
dx [u x −u  x] = 2, ∫0

1
dx [d x −d x] = 1, ∫0

1
dx [ s x−s x] = 0

f p =∫0

1
x dx 4

9
[u x u x ]1

9
[d x d x ]1

9
[s x s x ]≈0.18

f n =∫0

1
x dx 1

9
[u x u x]4

9
[d xd  x]1

9
[ s xsx ]≈0.12

∫0

1
x dx [u  xu xd  xd x s xs x] = 1.0



  

The Spin of the Parton
F1(x) couples to transverse photons, T        
while F2(x) couples to both T and L

Callan and Gross showed that if the partons 
have spin 0 or 1

but if they have spin ½, then

This last expression, F2(x) = 2 x F1(x) is called 
the Callan-Gross Relation.

D.J. Gross

T  x∝F 1x ,  L x∝F 2 x−2 x F 1x

lim
Q2∞

 Lx 0 ⇒ lim
Q2∞

F 2x  = 2 x lim
Q2∞

F 1 x

lim
Q2∞

T x 0 ⇒ lim
Q2∞

F 1x  = 0



  

The Spin of the Parton
Defining R ≡ L/T,

SLAC-MIT found <R> ⋲ 0.18 in the region 
measured, strongly favoring spin ½ and the quark 
interpretation.
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Extending the Parton Model
Given its success in describing DIS, it was 
natural to try to extend the parton model to 
describe other high energy hadronic processes, 
including e+e-  hadrons (Drell,Yan,Levy) and    
pp  * + X (Drell,Yan).
The ratio R = eehad/ee (at leading order) has 
a simple interpretation in terms of the number 
and charges of constituent flavors.
The Drell-Yan process needs the parton 
densities and high energy.  Initial studies didn't 
seem to work well.



  

Summary: The Parton Model
Studies of hadron structure showed first that 
the proton is a diffuse object and then later 
that it is a composite object.
The Parton Model was invented to describe the 
scaling of the structure functions of DIS.
The Parton Model gave a formula for computing 
DIS cross sections which could be extended to 
cover other hadronic processes.
Contact with the quark model comes from the 
spin of the charged partons and parton density 
sum rules which imply that the proton is (uud)



  

Non-Abelian Gauge Theory
            Despite the advances that came from      
            the Quark and Parton Models, there was  
            still no fundamental theory of the strong 
interactions.  The answer was found in an 
unlikely place: non-Abelian gauge theory.

Non-Abelian gauge theory was invented by Yang 
and Mills, who tried to develop a theory of the 
strong interactions by gauging isospin symmetry.

It was a beautiful theory, but it didn't work.

C.N. Yang



  

Non-Abelian Gauge Theory
Non-Abelian gauge theories didn't work in a 
variety of ways:

Gauge bosons must be massless, but “clearly” they 
weren't, or they would have been seen.             
This problem arose in the original Yang-Mills paper.

Gauge boson self-interactions made calculations 
cumbersome and obscured renormalizability.        
In the modern view, renormalizability is not 
essential for an “effective field theory”, but at 
that time, non-renormalizability presented a 
barrier to serious calculation.



  

Failures of Non-Abelian Theories
Hadronic physics is full of broken symmetries 
(isospin, flavor SU(3), ...) so some tried to 
explain the strong force with spontaneously 
broken gauge theories.
           Weinberg describes failing to describe     
           the strong force with a broken                 
           SU(2)⊗SU(2) symmetry (with the  and   
           a1 as the gauge bosons) when he realized   
           that spontaneously broken SU(2)⊗U(1)     
           would work for the weak interactions.

S. Weinberg



  

Renormalizability Proven
           Many theorists had given up on gauge        
           theories, and even field theories, as         
           viable descriptions of particle physics.  
The spectacular success of QED was seen as an 
anomaly amidst widespread failure.
The tide began to turn in 1971 when 't Hooft 
demonstrated that non-Abelian gauge theories 
(unbroken and spontaneously broken) are 
renormalizable.  There was a surge of interest in 
gauge theories and the machinery of 
renormalization was quickly developed.

G. 't Hooft



  

QCD Proposed
           In 1972, at the International Conference 
           in Chicago, co-hosted by the new NAL,      
Gell-Mann and Fritzsch proposed an SU(3) gauge 
theory of colored quarks and gluons, as a theory 
of the strong interactions.  That is: QCD.
They still felt that quarks and gluons were 
“fictitious”, and were quite apologetic about 
constructing a theory from such objects.  It 
would be some time before quarks were fully 
accepted as physical quanta.

M. Gell-Mann



  

The ideas from this talk were not published 
in a journal until after the discovery of 
Asymptotic Freedom.



  

Asymptotic Freedom
The experiments in DIS placed severe 
constraints on a field theory of the strong 
interactions.  Among the most difficult demands 
to satisfy was Asymptotic Freedom.
In a field theory, Asymptotic Freedom means 
that the coupling gets weaker as energy 
increases.  To check this, one must determine 
the coupling's flow under the renormalization 
group.

If  < 0, the theory is Asymptotically Free.

g  =  ∂ g
∂



  

The Renormalization Group

There are many prescriptions for renormalizing 
a field theory.  While the parameters of the 
theory may vary with the prescription, the 
physical content of the theory does not!
Transformations that change the 
renormalization conditions, but leave the physics 
unchanged may be viewed as elements of a 
symmetry group.  This is called the 
Renormalization Group.  The parameters are said 
to run under the renormalization group.



  

The Callan-Symanzik Equation
In general, the renormalization condition can be 
specified in terms of a renormalization scale .
Consider a renormalized Green's Function

under a shift of :
The Green's function shifts:
But G(n)(x1…xn)  is a function of  and g, so

Defining  =  ∂g/∂ and  = -  ∂/∂ gives the

Callan-Symanzik Equation:

Gnx1 xn = 〈∣T x1xn∣〉c
 , g g g , 1

Gn1  nGn .

dGn

d 
= ∂G n

∂
∂Gn

∂ g
∂ g
∂

= n
∂
∂

Gn

[ ∂
∂

  ∂
∂ g

 n ]Gn = 0.



  

Asymptotic Freedom
David Gross  set out to kill quantum field 
theory by showing that it could not 
describe the strong interactions.  He 
tried to prove that:

1) Scaling demands Asymptotic Freedom.

2) No field theory is Asymptotically Free.

Politzer was interested in dynamical 
symmetry breaking in non-Abelian gauge 
theories.

D.J. Gross

F. Wilczek

H.D. Politzer



  

Computing the  function

Using the Callan-Symanzik equation, we can 
compute the  function by renormalizing two and 
three point Green's functions.


∂G2 i , j

∂
=−2G

2i , j


∂G2 A

a , A
b

∂
=−2AG

2A
a , A

b


∂G3i , j , A

a
∂ g

=−
∂G3i , j , A

a 
∂

− 2  AG
3i , j , A

a



  

The  function and Asymptotic 
Freedom

To compute the  function, one must compute 
loop diagrams



  

Dimensional Regularization
Dimensional Regularization greatly 
simplifies loop calculations.  The idea is 
to compute Feynman diagrams as analytic 
functions of the dimension of spacetime 
d = 4 - 2.  Divergences (ultraviolet and 
infrared) appear as poles in .  For 
physical quantities, the poles must cancel.

For consistency, the dimensionality of the fields 
and couplings change:  D[A] 1-, D[]3/2-,  
D[g].  To instead keep g dimensionless, let     
g g and let  be the renormalization scale.

G. 't Hooft

M.J.G. Veltman



  

Computing the  function
The renormalization constants are:

Z A= 1 
s
4

C FC A
−2

Z  = 1 −
s
4

C F −2

Z A= 1 
s
4

 5
3
C F−

4
3
n f T R −2

−2 = 1

− 2 ln  


∂G3 , , A

∂
=

∂Z  A

∂ ln 
, =−1

2

∂Z 

∂ ln 
, A=−1

2

∂Z A

∂ ln 

The result is that non-Abelian gauge theories 
are asymptotically free: g  =−g

s


11N c−2n f
12

⋯



  

Quantum ChromoDynamics
Following the discovery of Asymptotic Freedom, 
there was a rush to propose gauge theories of 
the strong interactions.

Weinberg proposed QCD as an element of 
a product group of gauge interactions of 
the Strong, Weak and Electromagnetic 
Forces.  He noted that the strong force

would conserve P and S and suggested that 
confinement could result from infrared slavery.
Meanwhile, Gell-Mann, Fritzsch and Leutwyler 
finally published their model.

S. Weinberg



  

Quantum ChromoDynamics
Gross and Wilczek had suggested that 
non-Abelian gauge theories could be 
theories of the Strong force when 
announcing Asymptotic Freedom. 
They soon wrote a pair of longer papers in 
which they explored non-Abelian gauge
theories and their behavior under the

renormalization group.  They echoed Weinberg's 
suggestion that infrared slavery could explain 
the confinement of quarks and gluons.

D.J. Gross

F. Wilczek



  

The Reality of Quarks
Still, the notion that quarks are “fictitious” 
persisted for some time.  The discovery of 
charm helped to change this view.
Further, the study of charmonium and the 
description of the spectrum with an 
asymptotically linear potential helped to explain 
confinement:
The energy in the field lines joining two 
separating partons continues to grow beyond the 
threshold for pair production, allowing each 
parton to neutralize it's color charge.



  

The Running of s

s From e+-e-annihilation s From Hadronic Jets



  

Hints of QCD
Including the color factor, the quark model gives 
good agreement with data (above resonance)
(R = had/)



  

Tests of QCD
Near the J/ region, R seemed to disagree with 
QCD/parton model, but it was really charm!



  

Tests of QCD
Away from resonances, pQCD works very well, 
even changing from 4 flavors to 5.



  

Tests of QCD: e+e-  hadrons



  

Logarithmic Scaling Violation



  

Quantum Chromodynamics
With the discovery of Asymptotic Freedom, 
SU(3) Yang Mills became a serious contender as a 
fundamental theory of the strong interactions. 
All the prescriptions and hand-waving arguments 
of the parton model had to be made rigorous.
In particular, one needed to:

– Identify Rules for performing pQCD calculations. 
– Define the parton densities.
– Derive factorization in DIS and hadron scattering.
– Specify what can be calculated.



  

Infrared Safety
The guiding principle of applying perturbative 
QCD is Infrared Safety.  Infrared Safe 
quantities do not depend on the long-distance 
behavior of QCD.  In particular, they are finite 
in the limit of vanishing masses so that

where Q2 is a scale characteristic of the larger 
sij.  Renormalization Group invariance then says:


s ij
2
,
mi

2

2
,s = 

sij
2
,0,s {1O 

mi
2

Q2
}

 
sij
2 ,0,s =  

s ij
Q2 ,0,s Q



  

Infrared Safety
            The  proof of Infrared safety comes       
            from the KLN theorem, which states       
            that a fully inclusive measurements, 
which sum over all degenerate initial and final 
states, are free from infrared divergences.
The short distance physics of parton scattering 
does not interfere with the long distance 
process that turns partons into hadrons.
This is why jet production is computed as parton 
scattering with no fragmentation.  The jets 
contain whatever hadrons are produced.

T.D. Lee



  

Infrared Safety
What about less inclusive processes?
The KLN theorem can be extended to cover 
differential cross sections.  The key is to 
understand the origin of infrared divergences.
Sterman showed that all infrared divergences 
are related to either soft or collinear 
momentum configurations.
As long as a measurement is “sufficiently 
inclusive”, i.e. it sums over the soft and collinear 
configurations, it will be Infrared Safe!



  

Infrared Safety
For an operational definition of infrared safety, 
consider a higher order calculation:

where Sn is a measurement function for 
observable J.  Infrared safety requires that:

2 J  =∫dn

dn
2

dn

S n p1, , pn

∫dn1

dn1
1

dn1

S n1 p1, , pn1

∫dn2

dn2
0

dn2

S n2 p1, , pn2

S n1 p1, ,1− pn , pn=S n p1, , pn , 01

S n1 p1, , pn ,0=S n  p1, , pn .



  

The Factorization Theorem
The Factorization Theorem 
(Collins,Soper,Sterman) is the field theory 
realization of the parton model.

For DIS, it states that:
F 1,3 x ,Q

2 = ∑
i= f , f , g

∫
0

1
d 

C1,3

i   x / ,Q2/2, f
2 /2,s i / p  , f ,

F 2x ,Q
2 = ∑

i= f , f , g
∫
0

1

d C 2
i  x / ,Q2/2, f

2 /2,si / p  , f ,



  

Factorization in Hadron-Hadron 
Collisions

The factorization theorem also justifies the 
extension of the parton model to hadron-hadron 
collisions.  Here it states:

The key departure from the simple parton model 
picture is that factorization works only to 
leading order in Q2.  At low Q2, caveat emptor!

A B J  =

∑
a ,b=q ,q , g

∫
x A

1

d A∫
xB

1

d B ab J 
x A
A
,
xB
B
,Q , ,s ,a/ AA ,b /BB ,

O 1/Q2



  

Factorization for Drell-Yan
A crucial piece of 
the theorem is 
that soft 
exchanges between 
the incoming 
hadrons cancel at 
the leading power 
of 1/Q2.

Power corrections at low Q2 explain why early Drell-
Yan measurements did not support the parton model .



  

The Factorization Theorem
The fundamental aspect of the factorization 
theorem is the separation of long-distance and 
short-distance effects.  The factorization scale 
 is arbitrary.

All long-distance initial-state physics is 
contained in a/A, b/B.  Short-distance physics is 
in  and is computed in perturbation theory.

A B J  =

∑
a ,b=q ,q , g

∫
x A

1

d A∫
xB

1

d B ab J 
x A
A
,
xB
B
,Q , ,s ,a/ AA ,b /BB ,

O 1/Q2

ˆ



  

Feynman Rules for pQCD
ℒQCD=−1

4
F aF 

a  qi i D ijq j − mqqiqi − a∂D
acc

F 
a = ∂ A

a−∂ A
a  g f abc A

b A
c

D ij
 = ∂ij − i g t ij

a Aa , D
ab= ∂

ab − g f abc A
c



  

Parton Distributions
We would like to define parton density functions 
like those in the parton model.  That is, for 
instance, u/p(x) representing the probability of 
finding a u-quark in the proton with momentum 
fraction between x and x+dx.

Since we are now working within a fundamental 
theory where one can calculate radiative 
correction, however, we must demand a rigorous 
definition.



  

Parton Distributions (cont.)

q j / h x , = 1
4
∫d y−e−i x p y−

〈 p∣ j 0, y− , 0T 
W y− ,0 j 0∣p 〉R

q j / h x , = 1
4
∫d y−e−i x p y−

〈 p∣ j 0, y− , 0T 
W y− ,0 j 0 ∣p 〉R

g/ h x , = 1
4
∫d y−e−i x p y− 〈 p∣Fa

 0, y− , 0T 
W  y− ,0F a

0∣p 〉R

W  y− ,0 = P exp [ i g∫0

y−

ds− Aa
0, s− , 0T  t

a ]

Parton Distribution Functions are defined in 
terms of matrix elements of renormalized 
operators in QCD.  For a hadron h with 
momentum p,

Where W is a Wilson line,



  

Parton Distributions (cont.)
Observations:
1) PDFs are non-perturbative.
The matrix elements involve the proton wave function.  They 

must be extracted from measurements.
2) PDFs are Ultraviolet Singular.
Renormalization spoils the interpretation as number densities. 

Treated as distributions, they still satisfy the sum rules.
3) PDFs are renormalized.
They obey renormalization group equations (the DGLAP 

equations), and evolve in Q2.
4) PDFs are universal.
They are process independent.  PDFs determined in DIS can 

be used in hadron-hadron collisions.



  

Parton Evolution
Unlike the parton densities of the parton 
model, PDFs evolve in Q2 according to DGLAP 
equations:

where

The splitting functions Pab(x) are now known 
through order s

3.

2 d
d2

a / px  = Pab ⊗ b / px ,

 f ⊗gx  =∫0

1
dy dz f y g z x−yz  =∫x

1 dz
z

f x / z g z

Pabx =∑
n=0

∞  s

 
n1

Pab
n x



  

Determining PDFs

PDFs are determined by comparing 
perturbative QCD calculations to 
experimental results.

Experiments are sensitive to different 
combinations of the PDFs, over differing 
ranges of parton momentum fraction x and 
are performed at a variety of values of Q2.

The fitting procedure must take the evolution 
in  Q2 between experiments into account.



  

Fitting PDFs
A wide variety of data are used to fit PDFs.
● DIS Structure Functions at H1 and ZEUS
● W (lepton) asymmetry at CDF
● Inclusive Jet Production at Tevatron
● Fixed target DIS (proton and deuteron)
● Fixed target Drell-Yan (proton and deuteron)
● Neutrino DIS (nuclear target)
The low energy data often require corrections 
to deal with “higher twist” effects.  
Deuterium and nuclear data require still more 
corrections.



  

PDF Fits (cont.)
Modern PDFs fit the available data very well.



  

PDF Fits
W boson
charge
asymmetry

Z/* 
rapidity
distribution



  

PDF Fits
CTEQ6M at two different values of Q:



  

PDF Fits (cont.)
Still the gluon is hard to constrain.



  

PDF Uncertainties

For many years, PDF “best fits” were 
distributed without any serious attempt to 
quantify how good the best fits were.  It is now 
common for PDF fitters to produce sets of PDFs 
that map out a range of “good” fits.  Averaging 
over the sets introduces uncertainty to Monte 
Carlo calculations that reflect the uncertainty in 
the input PDFs.



  

PDF Uncertainties (CTEQ6)



  

The Hard Scattering

The PDFs contain all of the initial state long-
distance physics.  The short-distance physics is 
contained in the hard-scattering cross section, 
often called the partonic cross section.  
The partonic cross section is computed by using 
the Feynman Rules to calculate on-shell matrix 
elements of (usually) massless quarks and gluons, 
which are then integrated over the phase space 
of the final state partons.



  

Feynman Rules for pQCD
ℒQCD=−1

4
F aF 

a  qi i D ijq j − mqqiqi − a∂D
acc

F 
a = ∂ A

a−∂ A
a  g f abc A

b A
c

D ij
 = ∂ij − i g t ij

a Aa , D
ab= ∂

ab − g f abc A
c



  

Applications of Perturbation 
Theory to QCD

There are several techniques for applying 
perturbation theory to QCD:

Fixed Order: All contributions are computed up to 
a specified order of s.
Resummation: For some observables, perturbation 
theory breaks down due to log enhancements       
(s ln  ~ 1).  but, one can resum to all orders.
Parton Showers: (See Sjostrand's lectures)  
Provide more realistic events than fixed order, but 
are usually based on lowest order matrix elements.



  

Fixed Order Calculations in QCD
This is the simplest technique and is also the 
easiest to carry forward to higher orders.
The idea is to compute all quantities up to a 
certain order of s.  However, different 
processes start at different orders of s.

Drell-Yan starts at order s
0, while n-jet 

production starts at order s
n.

For any process, the lowest non-vanishing order 
of s is called Leading order, or LO.



  

Higher Order corrections.
For any process, the lowest non-trivial order of 
s is called Leading order, or LO.

Leading Order (LO) calculations are performed at 
the Born level.

Next-to-Leading Order (NLO) calculations include 
one-loop corrections to the Born process and 
Single Real Radiation corrections

Next-to-Next-to-Leading Order (NNLO) 
calculations include two-loop corrections to Born, 
one-loop corrections to Single Real Radiation terms 
and Double Real Radiation correction.



  

Limitations of Fixed Order 
Calculations

Experience has shown that LO calculations are 
of only qualitative value,  often getting the 
normalization and shapes of distributions to 
within 10-20 percent.  Often they do worse.
NLO is the first serious approximation.  
Unfortunately, the state of the art currently 
allows for loop calculations with 5 (6 is coming) 
external partons.
NNLO is only available in a few special cases.



  

Limitations of Fixed Order 
Calculations

Many important backgrounds will be computed at 
NLO.  The improved accuracy will be a boon, but 
fixed order still leaves a lot to be desired in 
terms of event simulation.
At LO, each parton is identified with a jet.  A 
LOT of structure is being left out.  Even at 
NNLO, a jet can contain at most 3 partons!
There is great demand for combining the 
accuracy of NLO with the event simulation of 
parton showers.



  

Example: Inclusive Drell-Yan at NLO

qq Born 
and virtual 
terms.

qq Real 
emission 
terms.

qg Real 
emission 
terms.

We compute all terms at orders s
0 and s

1:



  

Drell-Yan at NLO
If we are fully inclusive, we treat the  pair as a 
massive vector boson and thus have a 21 
virtual process.  We integrate the squared 
amplitudes over phase space,

and combine real and virtual terms

V =
1

2 s∫
d 3−2q

23−22q0
24−24−2 p1 p2−q ∣M V∣

2

R=
1

2 s
d 3−2q d 3−2 k

23−24q0 k0
24−24−2 p1 p2−q−k ∣M R∣

2

Tot = V R.



  

Drell-Yan at NLO

n = 0 
s



n

n x , 0 =
42

9Q4 , 0= 1−x  , x≡Q
2

s
, D n=[ lnn1−x 1−x ]



qq ,V
1 = C F 1−x[−

1

2
− 1


 1

2
ln

2

Q2
− 5

2
 7

2
2−

1
2

ln
2

Q2
− 1

2
ln2 

2

Q2
]

qq , R
1 = C F 1−x[ 1

2
−1

1−ln

2

Q2
−3

2
2−ln

2

Q2
1

2
ln2 

2

Q2
]  2CF D 0 1−x [−

1

1−ln

2

Q2
]

 4CF D 11−x CF 1x [
1

−1ln

2

Q2−2ln 1−x ]−C F
1x2

1−x
ln  x 

qq ,VR
1 = C F 1−x [−3

2
1

− 5

2
22−

3
2

ln
2

Q2
]  2CF D 01−x [−

1

1−ln

2

Q2
]

 4CF D 11−x C F 1x[
1

−1ln

2

Q2−2ln 1−x]−C F
1x2

1−x
ln  x

qq , R
1 =

T R
2
1−2x2x2[−1


2 ln 1−x −ln x −ln

2

Q2
]
T R
4
32x−3x2

The result still has poles in !  Something is 
missing



  

Mass Factorization
The parts of the real-emission terms where the 
final state parton is collinear with the beam has 
already been included in the parton 
distributions.  Those pieces must therefore be 
removed from the real emission terms.
This is done by adding in the Mass Factorization 
Counterterms, which are convolutions of lower-
order terms with the DGLAP splitting functions.
 ij = ∑

ij=q ,q , g
ab⊗ai⊗bj ,  ij x  = 1−x ij−

s

P ij

0x


 ,

 f ⊗g x  =∫
0

1

dy∫
0

1

dz f  y g  z  x− yz 



  

Drell-Yan at NLO
Adding in the Mass Factorization Counterterms

we get the correct (finite!) result:

qq ,MF
1 = C F 

1

−1[ 3

2
1−x 2D 01−x −1−x ]

q g , MF
1 =

T R

2
 1

−1[1−2x2x2]

qq ,Tot
1 = C F [−4− 3

2
ln

2

Q2221−x −2D 01−x  ln
2

Q24D 11−x]

 C F 1x [ ln
2

Q2−2ln 1−x]−C F
1x2

1−x
ln  x

q g ,Tot
1 =

T R

2
1−2x2x2[2 ln 1−x −ln  x−ln

2

Q2 ]
T R

4
16x−7x2



  

Example II: Jet Production

The previous example of an NLO calculation was 
special for a number of reasons

There was no need to renormalize
One could perform the total integrals
We were not interested in the hadrons in the final 
state, so we needed no jet algorithms.

Let us now look at jet production.



  

Jet Production
Again, we have Born, virtual and real emission 
terms.  For simplicity I have drawn only all-gluon 
diagrams.



  

Jet Production
When computing jet production, we can't do the 
total integrals as we did for Drell-Yan.
Even if we could, there is far more information 
to be had from differential distributions.
To compute differential distributions, we need 
to impose acceptance cuts, etc., in order to 
approximate the experimental environment.
This is virtually impossible in an analytic 
calculation, so we adopt numerical techniques 
and perform Monte Carlo integrations over 
phase space.



  

Numerical Integration at NLO
The problem with numerical integration at NLO 
is that there are infrared divergences all over 
the place.  The one-loop amplitudes have explicit 
infrared poles, while the real radiation terms 
diverge in soft and collinear configurations.
We need some method of regulating the 
divergences so that we can compute the (finite!) 
NLO cross section with good numerical accuracy.
Most of all, we would like a flexible algorithm 
that can be applied to a variety of processes.



  

Universality of Infrared Structure

It is possible to develop a multipurpose 
algorithm for NLO calculations because the 
infrared structure QCD amplitudes is universal 
and the amplitudes factorize.  One loop 
amplitudes take the form,

where V contains all infrared poles and 
multiplies the Born amplitude.  M(1),f is infrared 
finite.

M 1 p1, , pn = V
1 p1, , pn M

0  M 1 , f  p1, , pn



  

Universal Infrared Structure
Real radiation amplitudes factorize in the soft 
and collinear limits.

The soft and collinear functions, S and C, 
integrated over phase space, generate the 
infrared poles to cancel those in loop amplitudes.
Integrating over S and C to cancel the virtual 
poles is another way of saying the measurement 
is “sufficiently inclusive” to be infrared safe.

lim
pn∥pn1

M n1
0  p1, , pn , pn1 = C  pn , pn1 ; K ×M n

0 p1, , pn−1 , K 

lim
pn10

M n1
0  p1, , pn , pn1 = S  pn , pn1 , p1×M n

0  p1, , pn



  

NLO  Jet Production

To summarize: Next-to-Leading Order 
calculations consist of two contributions:

Virtual Corrections to one loop.

Single Real Emission Corrections at tree-level.

NLO=∫
n1

d n1
0

∫
n

d n
1

Both terms are infrared singular.



  

A subtraction scheme adds (and subtracts 
back out) a local counter-term to both Virtual 
and Real Correction terms, canceling the 
infrared singularities.

Both terms are now infrared finite.

NLO=∫
n1

d n1
0 − d n1

0 

∫
n

d n
1 ∫

n1

d n1
0

A Multipurpose Approach to NLO



  

Q:How can we construct this local counterterm? 
A:The infrared structure of QCD amplitudes is   
    universal.
We define the local counterterm in (n+1)  body 
phase space as

where D is a function of  p1,pn,pn+1, (which define 
the momenta k1,kn) which has the same infrared 
structure as the real emission amplitude.  Mn is 
the on-shell n-point Born amplitude.

The Subtraction Method
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The Subtraction Method

Phase space can be factorized in such a way that 
the three particle phase sub-space d(p1,pn,pn+1) 
can be integrated down to the two particle 
subspace d(k1,kn).
Only |D|2 varies under this integration, which 
exposes the infrared poles, which cancel those 
of the loop amplitude as in the KLN theorem.
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Subtraction at NLO

Both terms are now infrared finite.
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A subtraction scheme adds (and subtracts 
back out) a local counter-term to both Virtual 
and Real Correction terms, canceling the 
infrared singularities.



  

Jet Production at the Tevatron



  

Still to discuss

● Jet algorithms and infrared sensitivity
● Fixed order vs all orders (resummation)



  

Identified Hadrons
If there are identified hadrons in the final 
state, (say  mesons or photons ) these are 
included through “Fragmentation Functions”, 
which are to some degree the inverse of the 
parton distributions:

The Fragmentation Function Dh/c(z) represents 
the probability of finding hadron h in the decay 
products (jet) of a parton of type c, carrying 
fraction z of the parton's momentum
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